Mutual information analysis for feature and sensor subset selection in surface electromyography based speech recognition

نویسندگان

  • Vivek Kumar Rangarajan Sridhar
  • Rohit Prasad
  • Premkumar Natarajan
چکیده

In this paper, we investigate the use of surface electromyographic (sEMG) signals collected from articulatory muscles on the face and neck for performing automatic speech recognition. While previous work has typically used full-scale recognition experiments to evaluate appropriate feature representation schemes for sEMG signals, we present a systematic information-theoretic analysis for feature selection and optimal sensor subset selection. Our results indicate that Mel-cepstral frequency features are best suited for sEMG-based discrimination. Further, the sensor subset ranking obtained through the mutual information experiments are consistent with the results obtained from hidden Markov model based recognition. The framework presented here can be used for determining the best feature and sensor subset for a given speaker a priori, instead of determining them a posteriori from recognition experiments. We achieve a mean recognition accuracy of 80.6% with the best 5 sensor subset chosen by the MI analysis in comparison with 79.6% obtained from using the complete set of 11 sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum

Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Towards a practical silent speech recognition system

Our recent efforts towards developing a practical surface electromyography (sEMG) based silent speech recognition interface have resulted in significant advances in the hardware, software and algorithmic components of the system. In this paper, we report our algorithmic progress, specifically: sEMG feature extraction parameter optimization, advances in sEMG acoustic modeling, and sEMG sensor se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010